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A B S T R A C T   

The vagus nerve mediates parasympathetic nervous system control of peripheral physiological processes 
including cardiovascular activity and immune response. In mice, tonic vagal activation down-regulates inflam
mation via nicotinic acetylcholine receptor-mediated inhibition of the pro-inflammatory transcription factor NF- 
κB in monocyte/macrophages. Because Type I interferon and pro-inflammatory genes are regulated reciprocally 
at the level of transcription factor activation and cell differentiation, we hypothesized that vagal activity would 
up-regulate Type I interferon response genes concurrently with inflammatory downregulation in human immune 
cells. We mapped empirical individual differences in the circulating leukocyte transcriptome and vagal activity 
indexed by high frequency (0.15–0.40 Hz) heart rate variability (HF-HRV) in 380 participants in the Midlife in 
the US study. Here we show that promoter-based bioinformatics analyses linked greater HF-HRV to reduced NF- 
κB activity and increased activity of IRF transcription factors involved in Type I interferon response (independent 
of β-antagonists, BMI, smoking, heavy alcohol consumption, and demographic factors). Transcript origin ana
lyses implicated myeloid lineage immune cells as targets, representing per-cell alterations in gene transcription 
as HF-HRV was not associated with differential prevalence of leukocyte subsets. These findings support the 
concept of parasympathetic inhibition of pro-inflammatory gene expression in humans and up-regulation of Type 
I interferons that could augment host defense against viral infections.   

1. Introduction 

The role of the vagus nerve in down-regulating inflammation has 
been established in model systems, but its broader impact on human 
immunology remains largely unclear. In LPS-stimulated human macro
phage cultures, administration of acetylcholine, the primary vagal 
neurotransmitter, attenuated the release of the pro-inflammatory cyto
kines TNFα, IL-1ß, and IL-6 but not the anti-inflammatory IL-10 (Bor
ovikova et al., 2000). In vagotomized rats, administration of LPS elicited 
the release of TNFα in serum, an effect that was significantly decreased 
by electrical stimulation of the distal vagus (Borovikova et al., 2000). 
Vagal activity inhibits the migration of leukocytes to sites of inflam
mation in model systems (Saeed et al., 2005), in part by its action on the 
reticuloendothelial system of the liver and spleen where cytokines are 
produced. These vagal anti-inflammatory effects are dependent on an α7 

subunit of the nicotinic acetylcholine receptor (α7nAChR) (Wang et al., 
2003) - NFκB pathway (De Waal Malefyt, 1991; Nishiki, 2004; Zhang 
et al., 2017b) in macrophages. In mice with a knockout of the α7 sub
unit, LPS causes unrestrained TNFα, IL1-ß, and IL-6 responses in serum, 
liver, and spleen (Borovikova et al., 2000; Wang et al., 2003). Admin
istration of α7nAChR agonists decrease this cytokine release (Wang 
et al., 2004). These model system data support the existence of a 
cholinergic anti-inflammatory reflex (Tracey, 2009). 

Analysis of oscillations in heart rate (HR) may provide a window on 
human vagal physiology in vivo and therefore a method to probe the 
cholinergic anti-inflammatory reflex in humans. HR typically is not 
steady but rather, it varies cyclically and at different frequencies. Beat- 
to-beat variation in HR reflects modulation of autonomic outflow to the 
heart (Akselrod et al., 1981; Saul, 1990). Oscillations in the high fre
quency (HF) range (0.15–0.40 Hz) range are widely recognized to reflect 
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cardiac vagal regulation (Saul et al., 1991). Slower oscillations, in the 
low frequency (LF) range (0.04–0.15 Hz), are the product of both car
diac parasympathetic and sympathetic modulation (Pomeranz et al., 
1985). Because HF heart rate variability (HF-HRV) reflects cardiac vagal 
modulation, it should relate to vagally regulated inflammatory processes 
and some data support this connection. Using data from 757 participants 
in the CARDIA study, we reported that HF-HRV during a seated rest was 
inversely related to serum IL-6 and CRP (Sloan et al., 2007). Similarly, 
we reported inverse relationships between HF HRV and serum levels of 
fibrinogen and CRP in 1153 participants from the MIDUS (Midlife in US) 
study (Cooper et al., 2015). In 661 healthy employees from an airplane 
manufacturing plant in Germany, HRV measured as the root mean 
squared successive difference (rMSSD) was inversely related to both 
white blood cell count and CRP (Thayer and Fischer, 2009). In 1601 
participants in the Young Finns Study, rMSSD and HF-HRV were 
significantly and marginally inversely related to CRP (Haarala et al., 
2011). In 643 older adults free of heart disease, SDNN, a global measure 
of HRV, was inversely related to serum CRP (Sajadieh et al., 2004). 
These associations are consistent with mechanistic data from animal 
models showing that experimental induction of inflammation can sup
press HRV (Masson et al., 2015) and that vagus nerve stimulation can 
increase HRV in parallel with reductions in TNFα (Samniang et al., 
2016) or NF-κB p65 nuclear translocation (Sun et al., 2013). However, 
the signaling pathways that mediate relationships between vagal ac
tivity in inflammatory protein expression in humans have not yet been 
defined. 

Beyond inflammation, little is known about the effects of vagal ac
tivity on other aspects of human immune response such as innate anti
viral responses or adaptive immune responses by B and T lymphocytes. 
However, it is likely that broader effects exist because the para
sympathetic division of the autonomic nervous system is reciprocally 
cross-regulated by the sympathetic division of the autonomic nervous 
system, and the sympathetic nervous system is known to exert pervasive 
effects on the innate immune system, including pro-inflammatory effects 
reciprocal to those associated with parasympathetic activity as well as 
inhibition of innate antiviral responses mediated by the Type I inter
feron system (Collado-Hidalgo et al., 2006; Irwin and Cole, 2011). As 
such, it is conceivable that HF-HRV might be associated with a recip
rocal increase in activity of the Type I interferon system in addition to 
decreased activity of the pro-inflammatory system. To address this hy
pothesis, and to clarify the gene regulatory pathways through which 
parasympathetic activity regulates innate immune response in humans, 
we mapped the empirical differences in leukocyte gene expression 
associated with individual differences in HF-HRV and quantified activity 
of two major gene regulatory axes that characterize cellular differenti
ation and anti-microbial effector responses in the myeloid lineage im
mune cells that mediate innate immune responses (i.e., monocytes, 
dendritic cells, and neutrophil granulocytes) – inflammatory effector 
genes regulated by the pro-inflammatory transcription factor, NF-κB, 
and Type I interferon effector genes involved in innate antiviral re
sponses mediated by the Interferon Response Factor (IRF) family of 
transcription factors (Amit et al., 2009; Siegal, 1999). 

2. Materials and methods 

2.1. Participants and study protocol 

Data were collected from participants in the Midlife in the US 
(MIDUS) Refresher (MR) cohort (Weinstein et al., 2019), part of the 
larger MIDUS study of the behavioral, psychological and social factors 
accounting for age-related variation in health and well-being in a na
tional sample of middle-aged and older Americans (Brim et al., 2004). 
MR consisted of five projects, including a Biomarker Project (P4). 
Biomarker data were collected during 1.5-day visits to a clinical research 
center (CRC) at the University of Wisconsin–Madison, the University of 
California, Los Angeles, or Georgetown University. 

2.2. HRV assessment 

After an overnight stay at the CRC, a fasting blood sample was 
drawn. Participants then were provided with a light breakfast, but no 
caffeine consumption was permitted. Following breakfast, they began 
the HRV data collection protocol. ECG electrodes were placed on the left 
and right shoulders, as well as in the left lower quadrant. ECG was 
recorded in Lead II. Respiration bands were placed around the chest and 
abdomen and the finger cuff of a Finometer beat-to-beat blood pressure 
monitor was placed around the middle finger of the nondominant hand. 
Respiration was calibrated using an 800 cc spirobag (Ambulatory 
Monitoring Systems, Ardsley, NY). Data were recorded during an 11 min 
seated baseline as part of a more extensive psychophysiology protocol 
with exposure to challenging stimuli and recovery periods. Here we 
report HRV data from this resting baseline. Analog ECG signals were 
digitized at 500 Hz by a 16-bit A/D conversion board (National in
struments, Austin, TX) and passed to a microcomputer. 

The ECG waveform was submitted to an R-wave detection routine 
implemented by custom-written software, resulting in an RR interval 
series. Errors in marking R waves were corrected by visual inspection. 
Ectopic beats or noisy segments were corrected by interpolation. Files in 
which>20% of the RRIs were interpolated were excluded from analysis. 
High frequency (0.15– 0.40 Hz) HRV was computed based on 300-s 
epochs, using an interval method for computing Fourier transforms 
similar to that described by DeBoer, Karemaker, and Strackee (DeBoer 
et al., 1984). The mean value of HF-HRV from the two baseline 300-s 
epochs was computed, with the last 60 s excluded from analysis. 

2.3. RNA profiling 

Genome-wide transcriptional profiling was conducted on approxi
mately 107 peripheral blood mononuclear cells (PBMCs) collected from 
MIDUS participants by antecubital venipuncture followed by standard 
Ficoll density gradient centrifugation, as previously described (Love 
et al., 2010). Total RNA was extracted from PBMC (Qiagen RNeasy Mini 
QiaCube), checked for suitable mass (≥10 ng by NanoDrop ND1000 
spectrophotometry; achieved mean = 7457 ng, range 163–27104) and 
integrity (RNA Integrity Number ≥ 3 by Agilent TapeStation electro
phoresis; achieved mean = 5.1 ± SD 1.5), and assayed by RNA 
sequencing in the UCLA Neuroscience Genomics Core Laboratory using 
Lexogen QuantSeq 3′ FWD cDNA library synthesis and multiplex DNA 
sequencing on an Illumina HiSeq 4000 instrument with single-strand 65- 
nt sequence reads (all following the manufacturers’ standard protocol). 
Samples yielded an average of 11.0 million sequence reads (SD 1.6 
million), each of which was mapped to the GRCh38 human tran
scriptome sequence using the STAR aligner (Dobin et al., 2013) to 
generate transcript counts per million mapped transcripts (TPM). An 
average 96.0% (SD 1.0%) of reads mapped successfully and endpoint 
sample validity metrics showed an average inter-sample profile consis
tency mean r = 0.86 (SD = 0.08). Among 670 samples meeting input 
RNA quality criteria (RNA Integrity Number ≥ 3), 538 (80%) met the 
assay endpoint validity criterion of profile consistency r ≥ 0.85. TPM 
values were floored at 1 and log2-transformed for analysis as described 
below. (No additional RNAseq read-level QC or sample normalization 
was required because STAR accounts for variations in read quality 
during mapping and transcript quantification, and TPM normalization 
controls for variations in library size/sequencing depth.) 

To map the empirical transcriptomic correlates of HF-HRV while 
controlling for potential confounders, primary analyses used standard 
linear statistical models to estimate the magnitude of difference in 
average transcript abundance over a 4-SD range of variation in HF-HRV 
(i.e., ranging from a lower limit of 2 SD below the mean HF-HRV to 2 SD 
above) while controlling for age, sex, race (White vs Non), body mass 
index (kg/m2), educational attainment, history of regular smoking, 
history of alcoholism, and average drinks of alcohol per week over the 
last month. Ancillary analyses additionally controlled for the prevalence 
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of major leukocyte subsets within the circulating leukocyte pool by 
including as covariates the abundance of 8 mRNAs encoding differen
tiation markers for T lymphocytes (CD3D, CD3E), CD4 + and CD8 + T 
lymphocyte subsets (CD4, CD8A), B lymphocytes (CD19), natural killer 
cells (CD16/FCGR3A, CD56/NCAM1), and monocytes (CD14). Leuko
cyte subset marker abundance was quantified as the RNA sequencing- 
derived TPM value for each marker transcript (i.e., italicized gene 
symbols in the previous sentence). Among the 543 valid transcriptome 
profiles, 163 (30%) were missing data on HF-HRV or covariates, leaving 
a final analyzed sample size of 380. Genes showing minimal level or 
variation in expression (mean < 0.5 log2 units or SD = 0) were excluded 
from analysis, leaving 11,680 analyzable transcripts. Among those, 
linear model analyses identified 1,178 transcripts that showed a point 
estimate of ≥ 1.25-fold differential expression / 4-SD HF-HRV and these 
genes served as input into higher-order bioinformatics analyses of 
transcription factor activity and cellular origin. (Primary analyses took 
point estimates of differential expression as input into higher-order 
bioinformatics analyses because previous research has found point 
estimate-based screening to provide more reliable results than screening 
based on p-values (Cole et al., 2003; Norris and Kahn, 2006; Shi et al., 
2008; Witten and Tibshirani, 2007). 

Analyses of transcription factor activity utilized the TELiS promoter 
sequence database (Cole et al., 2005) as in previous research (Cole et al., 
2020; Miller et al., 2014) to test three a priori-specified hypotheses 
regarding activity of transcription control pathways involved in 1) 
down-regulated activity of the pro-inflammatory transcription factor, 
NF-κB (indicated by over-representation of NF-κB binding sites in pro
moters of down-regulated genes relative to up-regulated genes, quanti
fied by the TRANSFAC position-specific weight matrix V$NFKB_Q6), 
and 2) Type I interferon innate antiviral responses (IRFs; indicated by 
under-representation of V$IRF1_Q6 in up- vs. down-regulated genes). 
TELIS bioinformatics analyses assess changes in the expression of pu
tative transcription factor target genes (identified by the presence of 
consensus transcription factor-binding motifs in the gene’s core pro
moter sequence) and does not involve assessment of mRNAs that encode 
the transcription factor or its signaling pathway (because transcription 
factors are generally activated through post-translational modification 
of their protein structure, rather than by transcriptional changes in 
protein abundance). Inference of transcription factor activity from sta
tistical analysis of TELiS-annotated target genes has been well validated 
against other measures such as DNA-binding assays (e.g., electropho
retic mobility shift, chromatin immunoprecipitation) or experimental 
induction of transcription factor activity (e.g., by ligand-induced acti
vation, genetic over-expression) (Cole et al., 2005). TELiS analyses were 
conducted using 9 different parametric combinations of core promoter 
DNA sequence length (− 300, − 600, and − 1000 to + 200 nucleotides 
surrounding the RefSeq-designated transcription start site from the 
GRCh38 human genome sequence) and transcription factor-binding 
motif (TFBM) detection stringency (TRANSFAC mat_sim values of 
0.80, 0.90, and 0.95) (Cole et al., 2005). Log2-transformed TFBM ratios 
(comparing prevalence in promoters of up- vs. down-regulated genes) 
were averaged across the 9 parametric combinations and tested for 
statistical significance using standard errors derived from bootstrap 
resampling of linear model residual vectors (controlling for potential 
correlation across genes) to quantify sampling variability in the set of 
differentially expressed genes. 

To assess the role of myeloid lineage immune cells (classical and non- 
classical monocytes, dendritic cells, and neutrophils) in mediating HF- 
HRV-associated transcriptome differences, the same set of up- and 
down-regulated genes served as input into Transcript Origin Analysis as 
previously described (Cole et al., 2011) and previously applied (Cole 
et al., 2020; Miller et al., 2014), with cell type-specific gene expression 
reference profiles derived from publicly available data on isolated 
leukocyte subsets (Gene Expression Omnibus GSE1133 and 
GSE101489). Transcript Origin Analysis uses an external reference 
database of differential gene expression in isolated leukocyte subsets (i. 

e., GSE1133 and GSE101489) to quantify the contribution of specific cell 
types to an arbitrary set of differentially expressed genes (e.g., the set of 
genes up-regulated or down-regulated in association with HF-HRV). The 
reference data define the extent to which each gene transcript is pref
erentially expressed by each subtype of leukocyte (using a quantitative 
“cell type diagnosticity score” as defined in (Cole et al., 2011)), allowing 
the arbitrary gene set to be tested for significant difference in the mean 
diagnosticity score across cell types. Results were again tested for sta
tistical significance using standard errors derived from bootstrap 
resampling of linear model residual vectors (controlling for potential 
correlation across genes) to quantify sampling variability in the set of 
differentially expressed genes that served as analytic input. 

We tested the hypothesis that greater vagal activity, indexed by HF- 
HRV, would be associated with reduced expression of pro-inflammatory 
genes in circulating blood, and perhaps also with increased activity of 
the other major dimension of innate immune transcriptional response 
involving the Type I interferon system (Amit et al., 2009; Siegal, 1999; 
Su et al., 2004). 

3. Results 

3.1. Participants 

863 participants were enrolled in the MR Biomarker Project. Of 
these, 195 were excluded from HRV analysis because of noisy data or 
ectopic beats in excess of 20% of the total number of RRIs. 670 partic
ipants provided RNA assay consent and blood samples sufficient for RNA 
sequencing; 538 of those (80%) yielded high-quality RNA profiles suit
able for substantive analysis. This analysis included data from all 380 
participants who had valid measures of both HRV and gene expression 
(see Supplementary Fig. 1). Mean age ± SD was 50.35 ± 13.0 years. 192 
were women and 188 were men. Participants’ BMI was 30.67 ± 7.81 kg/ 
m2. 109 were non-white and 271 were white. Mean level of education 
was completion of 4 years of college. 

3.2. Transcriptional analysis 

Genome-wide transcriptional profiling of peripheral blood mono
nuclear cell samples identified 1,178 gene transcripts showing > 1.25- 
fold difference in average expression across the span of HF-HRV activity 
scores ranging from 2 SD below the sample mean to 2 SD above (i.e., the 
general range of variation in a normal distribution) – 522 transcripts up- 
regulated > 1.25-fold and 656 transcripts down-regulated (SI Data File 
1). These genes served as input into this study’s primary analysis testing 
the role of the pro-inflammatory transcription factor NF-κB as a poten
tial mediator of HF-HRV-related differences in gene expression. These 
analyses were conducted using the TELiS promoter-based bioinformatics 
analysis to quantify the relative prevalence of transcription factor- 
binding motifs for NF-κB and IRF transcription factors in the pro
moters of the up- vs. down-regulated gene sets (i.e., the relative preva
lence of NF-κB or IRF target genes among genes regulated in association 
with HF-HRV). As shown in Fig. 1, results linked greater levels of HF- 
HRV to reductions in bioinformatically inferred NF-κB activity (0.54- 
fold relative prevalence of NF-κB TFBMs in the promoters of up- vs. 
down-regulated genes, average log2 TFBM ratio -0.890 ± standard error 
0.221, p = .0001, controlling for age, sex, race, body mass index, 
educational attainment, smoking history, and alcohol use). Parallel an
alyses of the IRF transcription factor linked HF-HRV to greater levels of 
bioinformatically inferred Type I interferon signaling (1.28-fold relative 
prevalence, log2 TFBM ratio 0.357 ± 0.146, p = .016). Similar results 
emerged in analyses that additionally controlled for the relative preva
lence of 10 mRNAs marking major leukocyte subsets (NF-κB: 0.38-fold, 
− 1.41 ± 0.01, p < .0001; IRF: 1.23-fold, 0.295 ± 0.01, p < .0001), 
indicating the effects did not stem from any correlated variations in 
leukocyte subset prevalence, as well as in unadjusted analyses that did 
not include any covariates (NF-κB: 0.72-fold, -0.478 ± 0.207, p = .022; 
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IRF: 1.25-fold, 0.318 ± 0.064, p < .0001). Ancillary analyses also 
controlled for the use of β -adrenergic antagonist medications that can 
affect both HF-HRV (0.35 SD elevation in this sample, p = .025) and 
immune cell gene regulation (as reflected by reduced NF-κB activity and 
increased IRF activity in this sample; NF-κB: 0.52-fold, -0.936 ± 0.387, 
p = .016; IRF: 1.44-fold, 0.529 ± 0.255, p = .039) and continued to find 
a significant differences in bioinformatic indications of gene regulation 
as a function of HF-HRV (NF-κB: 0.56-fold, -0.845 ± 0.216, p < .0001; 
IRF: 1.31-fold, 0.385 ± 0.143, p = .008). 

In circulating blood, pro-inflammatory and Type I interferon tran
scriptional programs are mediated predominately by myeloid lineage 
immune cells including monocytes, dendritic cells, and neutrophil 
granulocytes (Amit et al., 2009; Murphy, 2011; Siegal, 1999; Su et al., 
2004). To determine the role of these myeloid cell types in mediating the 
transcriptomic correlates of HF-HRV, we conducted Transcript Origin 
Analyses (Cole et al., 2011) to quantify the extent to which HF-HRV- 
related gene transcripts derived disproportionately from monocytes 
(including both classical and non-classical subtypes), dendritic cells 
(including myeloid and plasmacytoid subtypes), and neutrophils. This 
analysis uses an external database of differential gene expression in 
isolated leukocyte subsets to quantify the contribution of specific cell 
types to HF-HRV-associated differences in genome-wide transcriptional 
profiles (genes listed in SI File 1). As shown in Fig. 2 (left panel), gene 
transcripts down-regulated in association with HF-HRV derived prefer
entially from monocytes, including both classical and non-classical 
monocyte subsets (classical: 0.64 ± 0.20, p = 0.0006; non-classical: 
0.58 ± 0.15, p = 0.0001). Down-regulated genes also derived prefer
entially from two other myeloid lineage cell populations: neutrophil 
granulocytes (0.60 ± 0.20, p = 0.0014) and BDCA1+/CD1c + myeloid 
dendritic cells (0.31 ± 0.11, p = 0.0020). Results showed no significant 
contribution to the HF-HRV down-regulated transcriptome from the 
other two circulating dendritic cell populations involving BDCA2 +
plasmacytoid dendritic cells or BDCA3 + dendritic cells (both p > .50). 
By contrast, genes up-regulated in association with HF-HRV (Fig. 2, right 
panel) derived preferentially from BDCA2 + plasmacytoid dendritic 
cells (0.22 ± 0.09, p = 0.0088) and from lymphoid lineage CD4 + T cells 
(0.60 ± 0.16, p = 0.0001), CD8 + T cells (0.31 ± 0.12, p = 0.0061), and 
B cells (0.34 ± 0.16, p = 0.0186). These cellular contributions to HF- 
HRV-related gene expression appear to stem from per-cell differences 
in gene regulation as Transcriptome Representation Analyses (Powell 

et al., 2013) testing for differential prevalence of leukocyte sub
populations found no significant differences in association with HF-HRV 
for any cell type examined (all p > 0.20). 

4. Discussion 

In genome-wide transcriptional profiles from circulating leukocyte 
samples, vagally-mediated HF-HRV is associated with reduced activity 
of the pro-inflammatory NF-κB transcription control pathway and 

Fig 1. Transcription factor activity (log2 TFBM Ratio: HF- HRV up-regulated/ down-regulated).  

Fig 2. Cellular origin.  
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increased activity of Type I interferon-related antiviral response genes 
mediated by IRF transcription factors. This reciprocal shift in the rela
tive equilibrium of pro-inflammatory and antiviral gene expression 
emerged despite control for demographic factors (age, sex, race), health 
behavioral risk factors (body mass index, smoking history, alcohol use), 
the use of β -adrenergic antagonist medications, and the relative prev
alence of major leukocyte subsets within the assayed cell samples. The 
reciprocal effects for NF-κB and IRF target genes are consistent with 
previous data documenting distinct inflammatory and antiviral tran
scriptional networks in innate immune cell (Amit et al., 2009; Murphy, 
2011; Siegal, 1999; Su et al., 2004). The relation of HF-HRV to the 
overall equilibrium of these two gene systems is consistent with previous 
experimental data showing direct anti-inflammatory effects of cholin
ergic signaling through the α7nAChR on NF-κB activity (Huston and 
Tracey, 2011; Wang et al., 2003). However, these effects may also be 
mediated in part by parasympathetic inhibition of sympathetic nervous 
system activity, the latter of which can induce a complementary 
“conserved transcriptional response to adversity” (CTRA) transcrip
tional program that is mediated by β -adrenergic signaling (Heidt et al., 
2014; McKim et al., 2018; Powell et al., 2013) and characterized by up- 
regulated expression of NF-κB target genes and down-regulated 
expression of IRF target genes (i.e., a profile reciprocal to that linked 
to HF-HRV in this study) (Cole, 2019). The present data suggest both 
mechanisms may be operative, as HF-HRV and β -adrenergic antagonists 
were each associated with reduced NF-κB and increased IRF activity net 
of the other’s influence. However, future research experimentally 
dissociating sympathetic and parasympathetic signaling will be required 
to clarify the relative contributions of these two autonomic pathways to 
the shifting equilibrium of pro-inflammatory and antiviral signaling 
observed here. 

Analyses of the cellular origins of differentially expressed transcripts 
identified myeloid lineage immune cells (monocytes, dendritic cells, and 
neutrophils) as major mediators of the transcriptomic variation associ
ated with HF-HRV. Genes down-regulated in association with HF-HRV 
derived preferentially from monocytes in general, and more specif
ically from both classical and non-classical monocyte subsets. These 
results are consistent with the indications of decreased NF-κB activity as 
monocytes are the chief source of pro-inflammatory gene expression in 
the circulating immune cell pool (Amit et al., 2009; Murphy, 2011; Su 
et al., 2004). Likewise, the preferential derivation of HF-HRV-up- 
regulated genes from plasmacytoid (BDCA2+) dendritic cells is consis
tent with the observed up-regulation of IRF activity as this cell type is 
known to be the primary source of Type I interferon in circulating blood 
(Siegal, 1999). Transcriptome representation analyses of cell subset 
abundance failed to indicate any significant association of HF-HRV with 
the relative prevalence of these cell types (or any others) within the 
PBMC pool. Such results suggest that the transcriptomic variations 
observed here likely derive predominately from per-cell changes in gene 
expression (e.g., due to variations in sympathetic and parasympathetic 
signal transduction and downstream gene regulation). Analyses of cell- 
type selective gene expression thus converge with the primary ana
lyses of transcription factor activity in linking the regulatory equilibrium 
of pro-inflammatory and antiviral gene expression with para
sympathetic activity as indexed by HF-HRV. 

Although this study has several strengths in terms of representa
tiveness, sample size, rigorous HRV assessment, and comprehensive 
transcriptome profiling, the present results are limited in several re
spects. Although these findings are consistent with previous experi
mental data from animal models (Borovikova et al., 2000; De Waal 
Malefyt, 1991; Nishiki, 2004; Saeed et al., 2005; Tracey, 2009; Wang 
et al., 2004; Wang et al., 2003; Zhang et al., 2017a), they come from a 
correlational analysis and a causal effect of parasympathetic activity on 
gene expression cannot be established from this study. The tran
scriptomic analyses tested pre-specified hypotheses regarding tran
scriptional control pathways and cellular mechanisms, but additional 
transcriptional correlates of HF-HRV likely exist and may be identified 

in future unbiased discovery analyses. This study did not involve any 
measures of disease, so the health significance of the observed differ
ences in gene expression remains to be determined in future research. 

5. Conclusions 

Despite these limitations, this study clarifies the gene-regulatory 
mechanisms linking vagally-mediated HRV to reduced inflammatory 
biology in humans and it also identifies a reciprocal increase in type I 
interferon activity that may enhance host resistance to viral infections. 
As predicted from previous analyses in model systems (Collado-Hidalgo 
et al., 2006; Tracey, 2002; Tracey, 2009), human HF-HRV was associ
ated with down-regulated NF-κB activity and up-regulated IRF activity 
under physiological conditions. These findings suggest that in
terventions to enhance vagal activity could potentially have a favorable 
impact on inflammation-related chronic diseases such as atherosclerosis, 
neurodegenerative diseases, and cancer, as well as host resistance to 
viral infections. 
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